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ABSTRACT 

Dispatching is the part of the elevator control which chooses which elevator 
serves which call.  Although dispatching can be performed with relatively 
simple rules there are opportunities to improve performance by applying 
more intelligent algorithms.  This paper reviews the fundamentals of 
dispatching, explaining a range of different approaches including fuzzy logic, 
neural networks and genetic algorithms.  Important issues missed by some 
designers of artificial intelligence dispatchers are highlighted.  Suggestions 
are given for elevator consultants who have to mediate enhanced 
performance claims from competing suppliers. 

1. INTRODUCTION 

This paper primarily addresses collective control where there are up and down 
landing call buttons on each floor and car call buttons in the car.  At the top and 
bottom landing there is a single button as the passenger can only travel in one 
direction.  Down collective, single push button and destination control are discussed 
elsewhere (CIBSE, 2010) (Barney, 2003) (Smith & Peters, 2002).  

Figure 1. Collective control 
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The decision of which elevator should be allocated to answer a landing call is made 
by the dispatcher.  Dispatching was originally a skilled human job, but over the years 
became automated using relatively simple rules based on experience and common 
sense.   Figure 2 illustrates a simple dispatching decision.  There is a down landing 
call at level 4.  Car B is travelling in the right direction and is the closest car; but has 
a stop for a car call at level 6.  Car A is further away, but could go straight to the call. 
Should Car A or Car B be “allocated” to the call? 

 

Figure 2. Deciding which elevator to allocate to a call 

Although dispatching can be performed with simple rules, when more elevators and 
more landing calls are considered, the number of different ways the system could 
answer the calls grows exponentially.  In Figure 3, there are five landing calls and 
four elevators; which is the best way to allocate the landing calls to the elevators?  
Because of this complexity, in modern group control systems, dispatching is 
sometimes performed with powerful microprocessors applying artificial intelligence.   

 

Figure 3. In a busy building there are many alternative  
allocation options to consider 
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2. COLLECTIVE OPERATION 

First consider how a single elevator answers the calls allocated to it.  Most modern 
elevators answer calls collectively as illustrated in Figure 4.  All landing calls, and the 
resulting car calls in one direction are served; then the car reverses and serves calls 
in the opposite direction. 

  

 

 

 

 

 

 

  

Figure 4. Collective operation (passenger destinations shown above heads)  
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Collective operation is not necessarily the most efficient way to service the 
passengers.  For example if in Figure 4 step (iv) both passengers had loaded, the 
stop at step (vi) could have been avoided. However, a passenger would be taken in 
the “wrong direction” first.  This is generally considered unacceptable (Barney, 2003). 

3. BASIC GROUP COLLECTIVE DISPATCHING ALGORITHMS 

3.1 Nearest car 

One of the simplest group collective algorithms is based on allocating the closest car 
that can stop in time for the landing call.  This is illustrated in Figure 5 where cars A, 
B and C are 15 m, 10 m, and 5 m away in distance from the 7 down landing call 
respectively.  Car C is allocated as this is the nearest car, and there is time for it to 
slow down to stop. 

 

Figure 5. Group collective algorithm based on allocating the nearest car 

3.2 Estimated time of arrival 

The estimated time of arrival (ETA) algorithm is very similar, except that the decision 
is made based on time rather than distance.  Consider the scenario in Figure 6.  Cars 
B and C are 10 seconds and 5 seconds away from the 7 down landing call 
respectively.  Car A would be 15 seconds away from the landing call if it travelled 
there directly.  However, it has to stop at level 8 for a car call and a time allowance is 
made for the stop, in this instance 10 seconds.  Car C has the lowest ETA and so 
receives the allocation. 
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Figure 6. Allocation with ETA algorithm 

3.3 Giving priority to coincident calls 

Some systems give priority to coincident calls; if the car is already stopping for a car 
call, then there is potentially some benefit in serving the landing and car call with a 
single car stop.  In Figure 7 car B has a car call on the same floor as the landing call, 
so it receives a bonus of 10 seconds which is deducted from the ETA.  The result is 
an adjusted ETA of 0 seconds, which is now better than car A.  So, car B receives 
the allocation. 

 

 

Figure 7. ETA allocation with coincident call bonus for car B 
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Giving priority to co-incident calls does not always improve quality of service; some 
passengers will wait longer.  However there is a reduction in the number of stops 
made by the elevators which increases handling capacity; if the system is busy this is 
a good strategy.  

4. APPLICATION OF ARTIFICIAL INTELLIGENCE 

Artificial intelligence (AI) is a specialist subject which focuses on developing 
machines and software which exhibit the sort of intelligence you might expect of 
human beings.  AI is complex, and cannot be addressed fully without extensive 
study.  In this section the purpose is to introduce some of the most basic concepts 
and demonstrate how they may be applied to elevators. 

4.1 Fuzzy logic 

To understand the basics of fuzzy logic, first consider a sports advisor program trying 
to asses a person’s potential as a basketball player.  Simple “crisp” logic makes 
decisions as illustrated in Figure 8; the person has to meet two independent, fixed 
criteria in order to be recommended basketball as a sport. 

  

A fuzzy logic approach could assess the degree and the importance of each skill, 
creating a combined score for the person’s potential as a basketball player.  In Figure 
9 we establish a rating for the person’s height and running ability.  The importance of 
each skill is given a rating and then an overall score is established.  If the score 
exceeds a threshold amount, then the recommendation to play basketball is made. 
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Figure 8. Sports advisor program using crisp logic 
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Figure 9. Sports advisor program using fuzzy logic 

To apply this approach to elevators, consider Figure 10.  Car A is furthest away from 
the 7 down landing call and almost empty.  Car B is close and almost empty.  Car C 
is very close but almost full.  So, combining those two considerations (and possibly 
others), car B is allocated the call. 

 

Figure 10. Example application of fuzzy logic to dispatching 

4.2 Neural networks 

Artificial neural networks are computer based models of the brain.  They are 
designed to learn and are good at pattern recognition.  Consider the child Anna 
learning to read as in Figure 11 .  She is shown the letter ‘a’ in many different fonts.  
Each time she is shown the letter ‘a’, she is told, “this is an ‘a’”.  After this she is 
trained.  Now we present her with the letter ‘a’ in a font she has not seen before.  
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Because she has learnt the shape or pattern of an ‘a’, she is able to recognise it and 
tells us “it’s an ‘a’”. 

 

Figure 11. Anna learning to read 

Likewise it is possible to train a neural network to recognise patterns of landing and 
car calls, teaching the network what the “correct” allocation is.  The “correct” 
allocation may be determined by simulation or some other means.  Then when a new 
scenario is presented to the network, it will make allocations applying the trained 
network.  The difficulty with this approach is that it takes a complex network and a lot 
of training to reach the point where good allocations are made. 

Another way to apply a neural network is to consider a single element of the 
dispatching problem.  In an ETA dispatcher, we have to estimate how long it will be 
until a car reaches a landing call.  We could do this using formulae for the travel time, 
making an allowance for the delay associated with each stop between the car’s 
current position and the landing call.  This would provide a good estimate, but may 
not account for a crowded car which will take longer to load and unload, or the 
possibility of additional calls being added before we reach the landing call in 
question.  There are many factors which might affect the actual ETA.  Using a neural 
network we can learn the significance of these automatically.  An example of this 
approach given by Powell (Powell, et al., 2000) is illustrated in Figure 12.   

During training the network’s inputs, i1 to in are presented with the cars’ distance to 
the call, the number of calls before the call, and any other inputs which could have 
some significance.  The weights w1 to wn start the training with an arbitrary value.  
For each set of inputs, we then compare the actual ETA with the sum of i1w1 + i2w2 + 
i3w3 ….. + inwn and then adjust the weights according to a set of rules.  As the 
network is trained the ETA estimate improves. 
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This simple neural network is called a linear perceptron; it has a single neuron as 
opposed to the human brain which has about 85 billion.  A linear perceptron is limited 
by the fact that it can only calculate ETA in terms of a linear equation.  A more 
accurate estimate would need a multi-layer network with more neurons. 

 

Figure 12. Using a linear perceptron to calculate ETA 

4.3 Genetic algorithms 

A genetic algorithm mimics the process of natural selection to search for solutions 
where it is impractical to consider every possible alternative.  Figure 13 represents a 
system with four elevators and five landing calls; for this discussion the floor and 
direction of the landing calls is not important.  There are many different ways we 
could allocate the landing calls to the elevators.  With four elevators and five calls, 
there are four to the power of five, 1024 possible options.  Of course many of these 
options will represent a poor choice, but we do not necessarily have time to check 
every option.  So the genetic algorithm relies on the process of natural selection to 
search for good solutions. 

In Figure 13 each allocation, for example Landing Call 1 to Elevator 2, corresponds 
to a gene.  Each set of allocations corresponds to a chromosome, for example 
Landing Call 1 to Elevator 2, Landing Call 2 to Elevator 1, Landing Call 3 to Elevator 
3, Landing Call 4 to Elevator 4, and Landing Call 5 to Elevator 2.  For clarity 
abbreviate this to: 

LC1- E2, LC2 - E1, LC3 - E3, LC4 - E4, LC5 - E2. 
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Figure 13. Allocations represented as genes in a chromosone 

To begin the dispatching process, select some random chromosomes, for example: 

E1 – LC1, E4 – LC2, E2 – LC3, E3 – LC4, E4 – LC5 
E3 – LC2, E4 – LC1, E1 – LC3, E2 – LC5, E2 – LC4 
E2 – LC5, E1 – LC2, E4 – LC1, E1 – LC4, E3 – LC3 
E2 – LC4, E3 – LC3, E1 – LC5, E4 – LC1, E1 – LC2 

Each of these can be tested with a simulation performed by the dispatcher.  The best 
performing chromosomes are kept, in this case: 

E3 – LC2, E4 – LC1, E1 – LC3, E2 – LC5, E2 – LC4 
E2 – LC4, E3 – LC3, E1 – LC5, E4 – LC1, E1 – LC2 

The next generation of chromosomes are evolved by natural techniques.  For 
example, two chromosomes can be compared with the next generation sharing the 
common genes and the choice between different genes being selected randomly, 
see Figure 14. 

 

Figure 14. Evolving the next generation by choosing common genes and a 
random selection process for others 

Another technique may be to take a well performing chromosome and mutate one of 
the genes, see Figure 15. 
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Figure 15. Evolving the next generation by mutating one of the genes 

The new generation is tested and compared with the previous generation.  The best 
chromosomes are kept, and the process is repeated until the time allowed for the 
dispatching process comes to an end. 

5. OTHER CONSIDERATIONS 

Elevator dispatching is a popular academic challenge and the subject of many 
research papers from specialists in artificial intelligence.   The allocation process 
described in sections 3 and 4 is considered in detail, but this alone is not enough to 
ensure efficient dispatching.  This section deals with other considerations sometimes 
forgotten. 

5.1 Parking calls 

Parking calls are used to move an elevator without an allocated landing call to a floor 
in anticipation of future demand.  The most common example of the requirement for 
parking calls is seen during up-peak traffic.   

In morning up-peak traffic there is often a stream of people arriving at the ground 
floor.  In a conventional system there is never more than one up landing call at the 
ground floor, so only one car is sent.  When that car is loading with the doors open 
no new landing calls can be inserted at ground.  So, there may be a queue of several 
car loads of people at the same time as their being one or more idle elevator at upper 
floors waiting for an allocation. 

A common solution is to insert parking calls during periods of known up-peak traffic.  
These calls bring the idle cars to the ground or other busy floor, ready to respond to 
the new landing call once the previous elevator has departed.  If the arrival rate of 
passengers is greater than the loading rate of a single car, then it is necessary to 
load more than one car at a time. 

Parking calls are often used at other times of the day, particularly in high rise 
buildings where leaving all the idle elevators close in proximity to each other will 
extend the waiting time of people registering a call at a distant floor.  

5.2 Increasing handling capacity to avoid saturation 

Where passenger demand exceeds the handling capacity that can be delivered by 
the selected method of dispatching, the elevator group saturates, and the 
optimisation goals are often self-defeating.  In this case, different dispatching 
strategies and optimisation goals are needed. 

E1 – LC1, E3 – LC2, E1 – LC3, E2 – LC4, E4 – LC5  

E1 – LC1, E3 – LC2, E3 – LC3, E2 – LC4, E4 – LC5  

Mutate 
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Barney shows that a conventional system has greater handling capacity at 
down-peak than in up-peak (Barney, 2003).  To achieve this increase in handling 
capacity the building is divided up into sectors; an elevator is sent to the top of each 
sector in turn.  This reduces the number of stops per elevator round trip and so 
increases handling capacity. 

Likewise in an evacuation scenario where it is safe to use the elevators, or at the end 
of a major event with large numbers of people, the dispatcher optimisation goals 
need to be different.  The dispatcher should consider increasing handling capacity as 
an optimisation goal as well as or instead of response and waiting times. 

5.3 Future demand 

The dispatching problem is normally solved based on current calls in the system.  
While these calls are being served other calls will be entered that will change the 
optimum solution.  Most systems will re-allocate calls to account for this.   

Accounting for future demand earlier in initial allocation will improve performance, but 
brings additional complexity to the dispatching problem.   

Simple rules, like giving priority to coincident stops (see section 3.3) give some 
benefit.  More sophisticated techniques can be used to estimate the number of 
people behind the call, through extrapolation seeking to minimise passenger based 
quality of service measures, e.g. waiting time and time to destination, rather than 
system based measures such as landing call response time (Smith & Peters, 2002). 

A generalised solution would consider alterative futures based on learnt traffic 
patterns, and assess the probability of these futures before making allocations.  This 
would address the problem of self-defeating optimisation algorithms and allow for 
parking calls to be created automatically based solely on learnt traffic. 

5.4 Load bypass 

Elevator groups applying collective control should include a load bypass function in 
order to avoid stopping for landing calls when the elevator is full. Load weighing 
needs to be properly calibrated.  Alternative load detection such as volumetric 
detection can be more effective in buildings such as hospitals where the space taken 
by passengers is not proportional to mass, for example because equipment and beds 
are being transported.  Learning can be used to assess when the elevator is too full 
to accept additional passengers. 

5.5 Doors 

Door control is not generally thought of as part of the dispatching algorithm.  
However information available to the dispatcher about traffic demand can be used to 
make intelligent decisions relating to door operation. In some cases these savings 
will be greater than can be achieved through intelligent dispatching. 

5.6 Bunching 

In some instances elevators bunch, as do other transportation systems, e.g. buses.  
This is a natural phenomenon which can be allowed for, although solutions need to 
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be applied with caution as what works in one scenario may compromise performance 
in another situation. 

5.7 The real world 

Dispatchers are normally designed using simulation programs where people do what 
they are told, elevators perform ideally, and communication between the elevator 
controller and the dispatcher is perfect.  The real world is very different.  Without on-
site observation and detailed monitoring allowing the designer to examine past 
events, it is unlikely that the simulated performance will be achieved.    

In the real world passengers will sometimes press both up and down buttons at the 
same time.  They will quit waiting for an elevator travelling down and get into an up 
elevator.  They will obstruct doors.  Irrespective of training, people will try and beat 
the system.  The best approach is to design systems which deter and mitigate the 
effects of misuse. 

6. MEDIATING PERFORMANCE CLAIMS 

Elevator consultants have the difficult problem of mediating enhanced performance 
claims from competing suppliers offering intelligent dispatchers.  This is a challenging 
task as simulations provided by suppliers are normally based on different 
assumptions, even when inputs are nominally the same.  Furthermore, reality does 
not always correspond with simulation, or even logging statistics.  Comments from 
clients that “the statistics are good but the reality is different” are not uncommon.   

The epilogue of CIBSE Guide D section 4 (CIBSE, 2010) states that the “CIBSE Lifts 
Group is also pleased to participate in peer review of enhanced performance claims”.  
To validate performance claims requires open access to monitoring data and 
statistics from existing jobs.  Without that validation, relying on enhanced 
performance claims puts clients at risk, in which case the consultant is better to rely 
on generic models. 

Where the consultant is confident that simulated performance can be delivered, test 
simulations should consider different traffic biases (incoming, outgoing and interfloor 
traffic) and entrance/special floor arrangements representative of those expected in 
the building.  Simulation should be performed across a range of traffic intensities 
including driving the system into saturation to assess performance in this case. 

7. CONCLUSIONS 

This paper has considered conventional collective control where there are up and 
down landing call buttons are each floor and car call buttons in the car.  Some of the 
content is applicable to other forms of control. 

The dispatching problem for conventional control can be solved simply and 
effectively with basic rules.  There are many strategies which can be taken to 
improve basic dispatching, all of which have merits.  Sometimes clever dispatching is 
let down because some aspects of the dispatching problem have been missed.   
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It is relatively easy to demonstrate dispatcher improvements in simulation.  However, 
without validation of actual installations, relying on enhanced performance claims 
puts clients at risk. 
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