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ABSTRACT

In this paper the author considers lift kinematics, the study of the motion of a lift car.
Ideal lift kinematics are constrained by human comfort criteria which limit the
maximum acceleration and jerk (rate of change of acceleration) that are acceptable.
Equations are presented which allow ideal lift kinematics to be plotted as continuous
functions for any value of journey distance, speed, acceleration and jerk. Applications
include generation of motor speed reference control curves. Supplementary results
include journey time formulae for use in lift traffic analysis.

LIST OF SYMBOLS

d lift journey distance in m

v maximum velocity in m/s

a maximum acceleration/deceleration m/s

i maximum jerk (rate of change of acceleration/deceleration) in m/s?

D(t) Distance travelled at time t
V(t) velocity at time t

A(t) acceleration at time t

J@)  jerk at timet

1 INTRODUCTION

Lift kinematics is the study of the motion of a lift car in a shaft without reference to mass or
force. The maximum acceleration and jerk (rate of change of acceleration) which can be
withstood by human beings without discomfort limits this motion. Ideal lift kinematics are the
optimum velocity, acceleration and jerk profiles that can be obtained given human constraints.

Microprocessor controlled variable speed drives can be programmed to match reference speed
profiles generated through the study of lift kinematics. Examples of these speed reference
curves, similar to those shown in Figure 1, are sometimes presented in lift manufactures' sales
literature as a demonstration of the fast, comfortable and efficient lift transportation available
for a particular drive system.



P AUl Foll TUTL Dy APRULITE UEIAVTLIDELY s WAMLIUET, LAIRRAines

Velocity (m/s)

Time (s)

Figure 1 Example lift velocity-time profile for one, two and four floor runs

2 OVERVIEW OF PREVIOUS RESEARCH & AUTHOR'S CONTRIBUTION
2.1 Previous Work

P D Day and G C Barney provide references of previous published work in this field in section
11.4 of CIBSE Guide D, Transportation Systems in Buildings®. In summary:

H D Molz presented the first major work in this area in 1986. In his paper, On the
ideal kinematics of lifts® (in German) he derives equations which enable minimum
travel times to be calculated, taking to account maximum values of jerk, acceleration,
and speed. Ifthe lift trip is too short for the lift contract speed or acceleration to be
obtained, the maximum speed and acceleration attained during the trip may be
calculated. Some other points on the ideal kinematic curves are calculated. This paper
was edited by G C Barney and re-published ® by Elevatori in 1991 (in English and
Italian).

N R Roschier and M J Kaakinen apply Molz' formulae to provided summary tables of
results for round trip time calculations .

In Elevator Trip Profiles®, J Schroeder presented a computer program that calculates
the maximum speed, and minimum journey time that a lift can achieve for given flight
distances if there is no speed limit. This produces interesting observations such as it
would take at total trip of about 17 floors for an 8 m/s lift to reach its full speed.

In Elevator Electric Drives® G C Barney and A G Loher suggest a computer program
based on H D Molz' equations. This is reproduced in CIBSE Guide D, Transportation
Systems in Buildings ™.

2.2 Author's Contribution

The author has derived equations which allow ideal lift kinematics to be plotted as continuous
functions for any value of journey distance, speed, acceleration and jerk. Supplementary
results include journey time formulae for use in lift traffic analysis. The remainder of this paper
is a discussion of the author's research.
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3. DERIVATION OF IDEAL KINEMATICS EQUATIONS
3.1 Approach to Derivation

The derivation was divided into three major sections, corresponding to the journey conditions
where: (A) the lift reaches full speed; (B) the lift reaches full acceleration, but not full speed,
and (C) the lift does not reach full speed or acceleration. The condition where full speed is
reached before full acceleration (a®>v.j) is discarded as this would be an illogical design.

Conditions A to C are represented graphically in Figure 2. Each of the three conditions was
divided into time slices, beginning and ending at each change in jerk or change in sign of
acceleration. Functions of jerk were written down for each time interval, then integrated to
give functions of acceleration, speed and distance over time. The end conditions of each set of
functions provided the start conditions for the next time slice.
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Figure 2 Ideal lift kinematics for: (A) lift reaches full speed; (B) lift reaches full acceleration,
but not full speed; (C) lift does not reach full speed or acceleration
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Formulae were derived to establish which of conditions (A), (B) or (C) apply given journey
distance, lift speed, acceleration and jerk. The derivation is recorded in reference . The
mathematics is relatively complex and laborious, but was aided by the use of mathematical
computer software (Mathcad version 4.0 from Mathsoft Inc.) which has a built in symbolic
processor for equation solving.

The complete set of ideal lift kinematic equations is given in appendices A to C. These
equations may be implemented in a programming language such as Basic, Fortran, Pascal,
C++, etc. An example part of the derivation for condition (A) is reproduced in section 3.2.

3.2 Example Section of Derivatior for Condition (A)

For motion during time period 0si<1;, refering to Figure 2(A) we can write down:

T(t) =] A(t) = jt

Mt .2
The velocity, by integrationis V (t) = | A(T)dT yielding V(1) = L1
40 2
rt .3
And the distance travelledis D (t) = V(T) dT yielding D (t) = J?t
J0

For motion during time period ts1<t,, refering to Figure 2(A) we can write down:

tl::jE J(t) =0 A(t) =a

The velocity can be found by adding the velocity at the end of the previous time slice to the
current acceleration, integrated.

jt 2 t _a2
+ A(T)dT  yielding V (t) =— +at

V(t) = 2]

t
Similarly, the distance travelled is the distance travelled at the end of the previous time slice
plus the current velocity, integrated.

. 3 t
jtq 3 2, a2
+ V(T)dT  yielding D(t) =~ -22%,2

Jtq

D(t) =

3.3 Example Results

Take journey distance, d=8 m; velocity, v=2.5 m/s; acceleration, a=1 m/s%, and jerk, j=2 m/s’.

Inputting this data into equations in appendices A to C gives us the results plotted in Figure 3.
The lift reaches full speed during its journey. Calculated values of t, are: t; =0.5 s, t,=2.5 s,
t3=35,t,=32st,=37s, ts=57s,t,=62s.
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Figure 3 Example plots of jerk, acceleration, velocity and distance

4. APPLICATIONS
4.1 Generation of Motor Speed Reference Curves

Motor speed reference curves are commonly held in a software look up tables. It is envisaged
that a software implementation of the equations presented in this paper will provide a fast,
flexible and efficient way of generating optimum reference speed profiles, on line in lift system
controllers.

4.2 Formulae for Lift Traffic Analysis

To calculate the handling capacity and performance of a lift system it is necessary to know how
long it takes a lift to travel given distances. Using the appropriate formulae taken from the
appendices, the travel time of a variable speed lift (with optimum control) can be written down

as follows:

2 2.
av+ vy

d -

D then Journey Time = — + _f} + Y (condition A)
j-a v j a

22> av - vz-j . a Afa3 + 4-d-j2 ..

if - <d<—————= then Journey Time = — + ————— (condition B)
j e P e
1
953 e ,
if d<T then Journey Time = (32-—_) (condition C)
i J

J

These equations are consistent with those presented by H D Molz?, but are in a simpler form.

Tt is advisable to add an additional time component to allow for motor start up time and any
deviations from the optimum speed profile. Depending on drive quality, P HDay and G C
Barney recommend that this component should be between 0.2 and 0.5 seconds ©.
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4.3 Other Kinematic Problems

The equations derived have applications to other kinematic problems such as power door
control.

5. CONCLUSIONS

Ideal lift kinematics provide the basis for optimum speed control of lifis, an essential
component for fast, efficient and comfortable transportation. The equations derived and
presented by the author of this paper further previous research by ailowing continuous,
optimum functions of jerk, acceleration, speed and distance travelled profiles to be plotted
against time. The results have applications in motor conirol and lift traffic analysis.
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APPENDIX A Lift Reaching Full Speed During Journey
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APPENDIX B Lift Reaching Maximum Acceleration, But Not Full Speed

3 2, 2
Results apply over range: %ﬁ <q<d¥FV
J Ja
— ¢ 4“~a+ a3+4-d-j2 M F«‘,a3+4~d~j2
177 2T T 3ot
) 2 2gaa P 2
. 3 4.4 Jad o 4.352 Jad 4 4-d.i?
ty =2 Ay tgo A 4d) PR L
2 24 Ja e
for OStStl
(1) =] A(t) =jt V() = 12 D(t) =18
2 6
for ty<i<t,
2 3 2 2
J{t) =0 A(t) =a V(1) ::‘a'+a-t D(t) ;:_a_,_a_._tJra_t,
J 6i° 23 2
for tzﬁﬁﬁt3

| 3 2
T(t) =-j A(t);:%_.j.uw

C3d G at e ad oy adia jd
SHALEE R + " S
]

o

2-a

4j 2 2 Ja2

3 )
B a az-«/a3+4~d-j2 d 3ta® tRa 1 tz-r~\/a3+4~d~j2
= + -—= +~Z—+ e

1242 1242 4 4] 4 a

+4/a3+4~d-j2~«@~t £ tjd  dofad+4-di?

—— i

4 6 a2 (3)
12:a\2



Ideal Lift Kinematics 183

for t3$t€t4

3 . ..2
J(t) Z:-j A(t):%a—Jt+MMfl
2-a8

B 2 3 . ..2, “ '.2 . 3 . ..2.
() = Na s 4dy J{_@i_zj_g_a_..___«wm
4+ 49 2-a

2 2 o2
. 2 2. . 3 . ..2. . .c . 2- 3_ - --2 l. 3
byid, 2023t Jesadtida jra Cdalsadi® 0
4 4 4. 2-a

4 4-na 6
et ofFaar
3 3.4 4.2 \2 3,2
L a +4-dj"a +d a +4-dj
12 12 @)
12-a
for t4<i<ts
2 3 a2
J(t) =0 A(t) :=-a V(t)::g.kwm_\[%,t.a
2] ]
3
.2 3 . ..2¢. 2- 2 3 . .'2 . 3
Dty m-an B, AL 4dd tV;+a_ﬁ__a__.Va rady 2a
2 J 25 2 jz 3.i%
for t5<t<ty

[ 3 2
I(t) =) A(t);:waﬂ‘t__aj‘«/_f.'d‘_J
a

2 .02 /\/ 3 4.2 3 12 "
V(t)::flr.+J_t__t.a_t a’ +4.dj +/\/a —§—4.dj J;+2dj

J 2 J; ] a
.3 2. A2 .~3 3 . ..2- . .-o‘
D(t)::-dm%»a— at_at +%+‘a +4_dj J;t+2dtj...
] a

3.2 ] 2

3 3
: )
4j£+4@f) _¥J£+4df_J£+¢dﬁa2 2nfa’ + 4-dj%d

LA e




Th T mms wm MW ) W URRIK BB GG BJRRGEGERECR

APPENDIX C Lift Not Reaching Maximum Speed or Acceleration
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